Chem. Ber. 114, 1503 – 1519 (1981)

Massenspektrometrische Untersuchung von Stickstoffverbindungen, XXXI^{1,2)}

Experimentelle und theoretische Untersuchungen zur dissoziativen Ionisierung von α -nitro- und α -halogen-substituierten Acetamiden.

Pseudo-einstufige Zerfallsprozesse von Radikalkationen in der Gasphase

Bernhard Ciommer, Gernot Frenking und Helmut Schwarz*

Institut für Organische Chemie der Technischen Universität Berlin, Straße des 17. Juni 135, D-1000 Berlin 12, W.-Germany

Eingegangen am 27. August 1980

Die unimolekulare Eliminierung von Br⁺ bzw. NO⁺₂ aus den Radikalkationen der Titelverbindungen 1 und 2 gehorcht nicht einem einstufigen Reaktionsverlauf unter Erzeugung eines substituierten α -Acylcarbenium-Ions 3. Markierungsexperimente und MNDO-Rechnungen legen einen Mechanismus nahe, bei dem die Dissoziation der C – X-Bindung durch einen intramolekularen H-Transfer von der NCH₃- zur C = O-Gruppe eingeleitet wird. Dies führt zur Zwischenstufe 4, die schließlich zu 5 weiterzerfällt. Die mechanistischen Details der unimolekularen Zerfallsreaktionen von 5 unter Ethylen-Verlust zu 13 und Keten-Abspaltung zu 17 werden eingehend diskutiert.

Mass Spectrometric Investigation of Nitrogen Compounds, XXXI^{1,2)}

Experimental and Theoretical Investigations on the Dissociative Ionization of α -Nitro- and α -Halo-substituted Dimethylamides of Acetic Acid. Pseudo-simple Cleavage Reactions of Gaseous Cation Radicals

The unimolecular elimination of Br[•] (and NO₂) from the cation radicals of the title compounds 1 and 2 cannot be described as a simple one-step process giving rise to the formation of the substituted α -acylium cation 3. Both experiments and MNDO calculations clearly indicate that the cleavage of the C – X bond is preceded by an intramolecular hydrogen migration, whereby a hydrogen from the NCH₃ group is transferred to the carbonyl oxygen. It is the intermediate 4 from which the actual dissociation takes place, thus generating 5. The mechanistic details of the process of both ethylene and ketene loss from 5 generating 13 and 17, respectively, are discussed in detail.

Die 70-eV-Massenspektren von Brom- (1) und Nitroessigsäure-dimethylamid (2) enthalten neben anderen Fragmenten (Tab. 1) ein überraschend intensitätsstarkes Signal bei m/z 86. Dieses Bruchstück, das durch unimolekulare Eliminierung des Substituenten X[•] (X = Br, NO₂) aus den jeweiligen Molekül-Ionen entsteht, kann nicht in einer einstufigen Reaktion M⁺· \rightarrow 3 + X[•] (Schema 1) erzeugt worden sein. Mit einem

Chem. Ber. 114 (1981)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1981 0009 - 2940/81/0404 - 1503 \$ 02.50/0 simplen C – X-Bindungsbruch unter Erzeugung eines sicherlich energiereichen α -Acylcarbenium-Ions 3^{3} sind mehrere kinetische Befunde unverträglich, wie z. B. 1). Bei Abnahme der Ionisierungsenergie steigt der relative Anteil der [M - X]⁺-Ionen auf Kosten der übrigen Fragmente stark an⁴⁾, und 2) der Prozeß $M^{++} \rightarrow [M - X]^{+}$ ist von einem sehr intensitätsstarken Übergangssignal begleitet (die Translationsenergie $T_{0.5}$ beträgt für $1^{++} \rightarrow [M - Br]^+ 0.53$ und für $2^{++} \rightarrow [M - NO_2]^+ 1.14$ kcal mol⁻¹). Beide Befunde und auch die weiter unten mitgeteilten Ergebnisse sind nur verträglich mit einer Kopplung von Umlagerung und Eliminierung. Im besonderen wird gezeigt, daß dem Bruch der C-X-Bindung in 1⁺⁺ und 2⁺⁺ eine intramolekulare Wasserstoff-Wanderung zu 4 vorgelagert ist, und die eigentliche Dissoziation aus der hierbei erzeugten reaktiven Zwischenstufe erfolgt. Die Br'- und auch die NO;-Eliminierung aus den Radikalkationen von 1 und 2 stellen somit weitere Beispiele für scheinbar einstufige Zerfallsprozesse unimolekularer Reaktionen dar, deren mechanistische Details in jüngster Zeit größeres Interesse gefunden haben und die für viele andere Systeme kürzlich zusammenfassend diskutiert wurden⁵⁾. Die Alternative, daß die Eliminierung von X^{*} aus 1⁺ und 2⁺ nicht über 4, sondern über 6 erfolgt und letzten Endes das substituierte Acylium-Ion 7 entsteht, wird ebenfalls diskutiert. Es wird anhand von MNDO-Rechnungen gezeigt, daß bei den Radikalkationen von 1 und 2 der über 6 verlaufende Reaktionsweg energetisch ungünstiger ist als derjenige, bei dem der Prozeß durch eine H-Wanderung zu 4 eingeleitet wird. 7 entsteht allerdings teilweise dann, wenn der Bruch der C-X-Bindung nicht durch Elektronenstoßionisation, sondern durch Chemische Ionisation (CI)⁶⁾ eingeleitet wird: Die aus 1 und 2 erzeugten [MH]⁺-Ionen (8) verlieren HX, wobei, vermutlich via 9, das Acylium-Ion 7 entsteht.

_	m/z	lon ^{a)}	1 (X = Br)	2 (X = NO ₂)	
		[M] ^{+ •}	24	88	_
	86	$[M - X]^+$	60	67	
	85	[M – HX] ^{+•}	<1	100	
	70	[M – CH ₂ X] ⁺	100	97	
	58 ^{b)}	-	20	87	

Tab. 1. Auszug aus den 70-eV-Massenspektren von 1 und 2

a) Die in % angegebenen Intensitäten sind bezogen auf den Basis-Peak = 100%. - ^{b)} Hochauflösende Massenspektrometrie belegt, daß das Ion m/z 58 einem Dublett mit den Elementarzusammensetzungen C₂H₄NO bzw. C₃H₈N entspricht. Bei 1 entstehen beide Komponenten im Verhältnis 1:1.7 und bei 2 im Verhältnis 2.4:1.

Unimolekulare Zerfälle der aus 1 und 2 erzeugten metastabilen [M – X]⁺-Ionen

Wie in den vergangenen Jahren erkannt und wiederholt demonstriert wurde⁸, eignen sich metastabile Ionen besonders gut für mechanistische Untersuchungen, da 1) die Ionen keine zu große Überschußenergie besitzen (verglichen z. B. mit der von Ionen, die bereits in der Ionenquelle zerfallen), 2) die mittlere Lebensdauer der Ionen wohldefiniert ist und (in Abhängigkeit von instrumentellen Parametern) ca. 10^{-5} s beträgt und 3) das komplexe kinetische System von Konsekutiv- und Konkurrenzreaktionen auf einfache (oftmals eindeutige) Mutter/Tochter-Relationen reduziert wird. Schließlich und endlich erlaubt die Anwendung der MIKE-Spektroskopie⁹) das Studium ausgewählter Ionen, ohne daß Interferenzen anderer Prozesse vorliegen. Allerdings nimmt man bei dieser Methode als Nachteil in Kauf, daß das Doppelfokussierungsprinzip eines Massenspektrometers außer Kraft gesetzt ist, also z. B. keine "hochauflösende" Massenspektrometrie möglich ist.

Die durch Elektronenstoßionisation erzeugten metastabilen $[M - X]^+$ -Ionen (m/z)86) aus 1 und 2 zerfallen unimolekular weiter, wobei als intensivste Sekundärfragmente Bruchstücke bei m/z 58 und 44 auftreten (Intensität, bezogen auf die Summe aller Sekundärzerfälle: m/z 58 (77%), 44 (15%)). Während die Entstehung von m/z 44 nur mit der Abspaltung von Keten als Neutralteil verträglich ist (s. unten), könnte der Verlust von 28 Masseneinheiten (m/z 86 \rightarrow 58) prinzipiell sowohl auf eine CO-Abspaltung (z. B. aus 7) als auch die Eliminierung von C_2H_4 zurückzuführen sein; der zuletzt genannte Prozeß wäre allerdings direkt weder aus 5 noch aus 7 möglich. Intuitiv ist man geneigt, das Neutralteil als "CO" zu identifizieren, da der CO-Verlust sicherlich dann die energetisch günstigste Reaktion darstellt, wenn den $[M - X]^+$ -Ionen aus 1 und 2 die Struktur des substituierten Acylium-Ions 7 zukäme. MNDO-Rechnungen¹⁰⁾ belegen, daß die Reaktion $7 \rightarrow 10$ (Schema 1) mit einer Aktivierungsenergie von nur 10 kcal \cdot mol⁻¹ gegenüber allen anderen Prozessen energetisch klar bevorzugt würde (s. weiter unten). Es gibt aber keinen Zweifel, daß die metastabilen $[M - X]^+$ -Ionen aus 1 und 2 unimolekular ausschließlich C_2H_4 (!) und kein CO verlieren und somit, wie eingangs dargelegt, der Reaktionsweg $M^+ \rightarrow 7 + X^+$ nicht oder nur sehr untergeordnet durchlaufen wird. Analysiert man nämlich die MIKE-Spektren der $[M - X]^+$ -Ionen der ¹³C- und D-markierten Analoga von 1 und 2 (Tab. 3: 1a - c, 2a - c), dann erhält man folgende Ergebnisse: Die $[M - X]^+$ -Ionen aus 1a, b und 2a, b¹¹⁾ zerfallen unter spezifischer Abspaltung eines Neutralteils der Masse 30, während die aus 1c und 2c er-

zeugten Ionen 28 Masseneinheiten (amu) verlieren. Dieser Befund bedeutet zwingend, daß es sich bei dem Neutralteil um Ethylen handeln muß, und zwar um $C_2H_2D_2$ bei 1a - 2b und C_2H_4 bei den ¹³C-markierten Amiden 1c und 2c. Lägen die metastabilen $[M - X]^+$ -Ionen dagegen als Isotopomere von 7 vor, dann sollten sie bei 1a - 2b unter Verlust von 28 amu (CO) und bei 1c und 2c unter Eliminierung von 29 amu (¹³CO) weiterreagieren. Da dies aber nicht der Fall ist, müssen diejenigen reaktiven $[M - X]^+$ -Ionen, die aus 1 und 2 durch Elektronenstoßionisation erzeugt wurden, eine andere Struktur als 7 besitzen.

Es soll aber nicht unerwähnt bleiben, daß 7 jedoch auf einem anderen Weg aus 1 und 2 intermediär erzeugt werden kann. Ionisiert man nämlich 1 und 2 nicht mit Elektronen, sondern chemisch, wie z. B. durch Protonierung mit CH_5^{+6} , dann wird ein Bruchstück m/z 86 gefunden, das sowohl durch HX-Eliminierung aus MH⁺ als auch durch Verlust von X⁺ aus den durch Ladungsaustausch mit $C_2H_5^{+}$ erzeugten M⁺ '-Ionen entsteht. Die Ionen m/z 86 zerfallen unimolekular – wie auch stoßinduziert – weiter, und die Analyse der Zerfallsprodukte für die Isotopomeren von m/z 86 zeigt klar, daß hierbei sowohl CO als auch C_2H_4 abgespalten wird (z. B. wird bei 1b Verlust von 28 und 30 amu gefunden, während bei 1c ein Neutralteil mit 28 und 29 amu eliminiert wird). Während die Ethylen-Abspaltung auch hier mit großer Wahrscheinlichkeit nicht über 7 verläuft, ist die experimentell nachgewiesene CO-Eliminierung jedoch sicherlich auf die intermediäre Existenz von 7 zurückzuführen; ein plausibler Weg stellt die in Schema 1 dargestellte Sequenz 1 (2) $\rightarrow 8 \rightarrow 9 \rightarrow 7 \rightarrow 10$ dar.

Welche Struktur haben die reaktiven $[M - X]^+$ -Ionen? Wie entstehen sie aus 1 und 2 bei der dissoziativen Ionisierung und nach welchem Modus verlieren sie Ethylen¹²? Antworten auf diese Fragen haben wir uns auch hier von einer quantenmechanischen Behandlung des Problems versprochen, da wir in der Vergangenheit mehrfach zeigen konnten¹³, daß die Kombination von massenspektroskopischer Untersuchung isolierter Teilchen mit der theoretischen Berechnung isolierter Ionen recht brauchbare Resultate liefert und detaillierte Einblicke in die Reaktionsabläufe gestattet.

Als Rechenmethode haben wir das von *Dewar*¹⁰⁾ entwickelte MNDO-Verfahren benutzt, wobei bei der Berechnung von Radikalkationen die "half electron"-Methode¹⁴⁾ herangezogen wurde. Zur Bestimmung der Geometrie und ΔH_f° -Werte von Übergangszuständen wurde unter vollständiger Geometrieoptimierung die zu lösende Bindung in Intervallen von 0.1 Å variiert. In der Nähe des Energiemaximums wurden die Berechnungen in Intervallen von 0.05 Å so lange durchgeführt, bis zwei benachbarte Punkte auf der Energiehyperfläche einen $\Delta\Delta H_f^\circ$ -Wert von <1 kcal · mol⁻¹ aufweisen. Als Übergangszustand wurde der Punkt mit dem größten ΔH_f° -Wert gewählt; die unter kompletter Geometrieoptimierung erhaltene Geometrie wird als die Geometrie des Übergangszustandes angesehen und der zu dieser Geometrie gehörende ΔH_f° -Wert als Energie des Übergangszustandes betrachtet.

Intramolekulare Wasserstoff-Wanderungen wurden in der Regel nach zwei verschiedenen Varianten analysiert. Einmal wurde der H-Abstand zwischen Ausgangs- und Endpunkt der Wasserstoff-Wanderung bei Optimierung der übrigen Strukturparameter systematisch variiert, bis die maximalen $\Delta\Delta H_f^o$ -Werte um weniger als $\pm 1 \text{ kcal} \cdot \text{mol}^{-1}$ auseinander Iagen. In der anderen Variante wurde der Übergangszustand mit einer optimierten Geometrie berechnet, bei der das wandernde H-Atom vom alten und neuen Bindungspartner gleich weit entfernt ist. Bei beiden Verfahren waren sowohl die resultierenden Geometriedaten als auch die ΔH_f^o -Werte recht ähnlich. Für die eigentlichen Dissoziationen wurden die MNDO-Rechnungen in der Weise durchgeführt, daß das zu eliminierende Neutralteil in Richtung seiner Bindungsachse bei konstantem Bin-

dungswinkel eliminiert wurde. Auch hier erfolgte eine komplette Optimierung der übrigen Geometrieparameter. Durch Verkleinerung der Intervallschritte konnte der Übergangszustand mit einer Genauigkeit von $\pm 2 \text{ kcal} \cdot \text{mol}^{-1}$ bestimmt werden. Da für die Br-Verbindungen bisher keine vollständigen Datensätze vorliegen und somit eine verläßliche Parametrisierung unmöglich ist, haben wir die Berechnung an den Chlor-Derivaten von 1 durchgeführt [ClCH₂CON(CH₃)₂, 21]. Bei den Nitroverbindungen ist erwähnenswert, daß MNDO die Bildungsenthalpie von NO₂ als um 12.5 kcal · mol⁻¹ zu stabil berechnet, während ΔH_f° von RNO₂-Verbindungen zu hoch berechnet wird (z. B. ist ΔH_f° von CH₃NO₂ nach MNDO um 21 kcal · mol⁻¹ höher als der Experimentalwert)¹⁰. Absolut gesehen, ist eine solche Diskrepanz nicht mehr tolerierbar; sie ist aber vermutlich unerheblich, wenn Isomerisierungsprozesse berechnet werden, und die Extremwerte gleichsinnig "falsch" berechnet werden. Für die eigentliche Dissoziation, wie z. B. die Abspaltung von NO₂*, müssen die erwähnten Fehler allerdings in Betracht gezogen werden (s. weiter unten).

Eliminierung von X' (X = Cl, NO₂) aus XCH₂CON(CH₃)₂⁺.

Alle Berechnungen, aus den Radikalkationen $X - CH_2CON(CH_1)^{++}$, [X = NO₂(2), X = Cl(21)] den Substituenten X[•] unter direkter Erzeugung des α -Acylcarbenium-Ions 3 herauszuziehen, scheiterten. Vollständige Geometrieoptimierung der Reaktionswege zeigt klar, daß die direkte Eliminierung von X. immer mit einer Wanderung der $N(CH_{\eta})_2$ -Gruppe gekoppelt ist, wobei via 6 das Acylium-Ion 7 entsteht. Für X = Cl ergibt die Rechnung einen streng synchronen Verlauf von Eliminierung und Umlagerung, während für X = NO₂ der Bruch der C – NO₂-Bindung der Wanderung der N(CH₄)₂-Gruppe leicht vorauseilt. Wichtig ist allerdings, daß bei beiden Molekül-Ionen die Reaktionswege unter Erzeugung von 7 immer über Übergangszustände (TS_1, TS_2) verlaufen, die energetisch höher liegen als jene, bei denen der Bruch der C - X-Bindung durch eine Isomerisierung der Molekül-Ionen von 2 und 21 via H-Wanderung zu 4a (bzw. 4b) eingeleitet wird (Abb. 1; TS₂, TS₃). So liegt TS₁ mit 263 kcal · mol⁻¹ um 54 kcal mol⁻¹ beträchtlich höher als der Übergangszustand TS₂ der Isomerisierung $21 \rightarrow 4a$, und diese Differenz ist sicherlich ausreichend, um bei Zerfällen metastabiler Ionen den Reaktionsweg $21 \rightarrow 7$ zugunsten $21 \rightarrow 4a$ vollständig zu unterdrücken. Bei dem ionisierten Nitroacetamid (2) sind die Verhältnisse auf den ersten Blick weniger klar, da TS₄ und TS₅ sich nur um $3 \text{ kcal} \cdot \text{mol}^{-1}$ unterscheiden. Berücksichtigt man allerdings die weiter oben erwähnten MNDO-Artefakte bei der Berechnung von ΔH_i^c für NO2[•] und RNO2[•] Verbindungen, dann darf der Schluß gezogen werden, daß TS4 vermutlich deutlich zu niedrig und TS3 zu hoch berechnet werden - d. h. aber, daß die für die Diskriminierung der Reaktionswege $2 \rightarrow 7$ bzw. $2 \rightarrow 4b$ maßgeblichen Unterschiede der Energien von TS₄ und TS₅ wesentlich größer als 3 kcal · mol⁻¹ sein müssen. Gemeinsam ist beiden Radikalkationen, 2⁺⁺ und 21⁺⁺, daß die H-Wanderung zur Zwischenstufe 4¹⁵⁾ den geschwindigkeitsbestimmenden Schritt in der Vielstufenreaktion $M^{++} \rightarrow$ Isomerisierung $\rightarrow 5 + X^{+15}$ darstellt: Die Übergangszustände TS₃ (Cl⁺-Eliminierung) und TS₆ (NO₂'-Abspaltung) liegen deutlich tiefer als die von TS₂ und TS₅ (Abb. 1).

Mechanismus der Ethylen-Eliminierung aus den [M - X]⁺-Ionen 5

Das Neutralteil C_2H_4 , das durch unimolekularen Zerfall von 5 freigesetzt wird, baut sich spezifisch aus den beiden intakten CH₂-Gruppen von 5 auf (siehe Markierungser-

Abb. 1. MNDO-Reaktionsprofile für die Eliminierung von X[•] (X = Cl, NO₂) aus ionisiertem α -Chloracetamid 21 (Abb. a) bzw. α -Nitroacetamid 2 (Abb. b) ¹⁶). Die Pfeile an den Extremalwerten in Abb. 1b sollen qualitativ andeuten, ob der wirkliche ΔH_f° -Wert der jeweiligen Spezies niedriger (1) oder höher (1) liegt als der berechnete (s. Text)

gebnisse, weiter oben). Die MNDO-Rechnungen ergeben, daß zunächst Ringschluß zum Kation 11 erfolgt¹⁷⁾. Die C_2H_4 -Eliminierung aus 11 findet nicht in Form einer synchron verlaufenden Cycloreversion statt, bei der die $C^1 - C^2$ - und die $N - C^3$ -Bindungen gleichsinnig gedehnt werden. Die Rechnungen deuten vielmehr auf einen stark asynchronen, fast zweistufigen Reaktionsverlauf hin. Hierbei wird zunächst die

 $N-C^3$ -Bindung gelöst, wobei 12 entsteht. 12 stellt allerdings als primäres Carbokation vermutlich kein wirkliches Minimum auf der Energiehyperfläche dar, da die Isomerisierung $12 \rightarrow 11$ praktisch mit einer Aktivierungsenergie < 1 kcal · mol⁻¹ verläuft (Abb. 2). Durch kontinuierliche Dehnung der $C^1 - C^2$ -Bindung verliert 12 schließlich C_2H_4 .

Abb. 2. MNDO-Reaktionsprofil zur Eliminierung von C₂H₄ aus 5

Auf die Frage, ob das hierbei resultierende Ion 13 wirklich als "methylierte" Isocyansäure (13) oder als "O-protoniertes" Methylisocyanat, $HO = C = N - CH_3$ (13a) vorliegt, gibt die MNDO-Rechnung eine befriedigende Antwort zugunsten von 13. Vergleicht man die (p_y - p_y)- und (p_z - p_z)-Bindungsordnungen des Methylisocyanates (14) mit denen von 13, dann stellt man bei 13 eine erhebliche Abnahme dieser Bindungsordnungen für die C – O-Bindung fest (verglichen mit 14), während die Daten der C – N-Bindung entsprechend größer geworden sind (Tab. 2). Dies ist am besten verträglich mit der Interpretation, daß der Doppelbindungscharakter der C = O-Gruppe abgenommen hat, während die C = N-Doppelbindung verstärkt wurde, was aber nur dann zu erwarten ist, wenn das Ion überwiegend als 13 vorliegt. Qualitativ drückt sich dieses Ergebnis auch in den Änderungen der Bindungslängen der beiden linearen Moleküle 13 und 14 aus.

- Diadaaa	1	3	1	14	
Bindung	p _y -p _y	p _z -p _z	p _y -p _y	p _z -p _z	
C-0	0.42	0.29	0.77	0.62	
C – N	0.87	0.92	0.49	0.75	

Tab. 2. Bindungsordnungen (py-py) und (pz-pz) für 13 und 14

Keten-Eliminierung aus dem aus 1 und 2 erzeugten metastabilen [M – X]⁺-Ion

Wie eingangs erwähnt, verlieren die durch Elektronenstoß aus 1 und 2 erzeugten metastabilen $[M - X]^+$ -Ionen neben Ethylen (77%) auch noch Keten (15%), wobei ein Ion der Masse m/z 42 entsteht.

Aus den sehr unfangreichen MNDO-Rechnungen finden wir, daß der energetisch günstigste Reaktionspfad von der Zwischenstufe 11 ausgeht (Abb. 3), der bereits bei der Ethylen-Eliminierung (siehe Abb. 2) eine zentrale Rolle gespielt hat. Zunächst erfolgt eine Isomerisierung von 11 zu 15 über eine [1.3]-Wasserstoffwanderung¹⁸, bei der der wandernde Wasserstoff im Übergangszustand TS_{10} unsymmetrisch zwischen dem Ursprungs- und Zielatom angeordnet ist ($r_{O-H} = 1.04$ Å, $r_{N-H} = 1.46$ Å). Heterolyse der C¹ – N-Bindung in 15¹⁸ gibt die Zwischenstufe 16, aus der durch Bruch der CH₂-CH₂-Bindung schließlich Keten und das Ammonium-Ion 17 erzeugt werden.

Abb. 3. MNDO-Reaktionsprofil zur Eliminierung von Keten aus den $[M - X]^+$ -Ionen

Wenn Abb. 3 tatsächlich die Wirklichkeit widerspiegelt, dann hätte dies zur Konsequenz, daß aus den Vorläufern 1a - 2c Keten mit der in Tab. 3 angegebenen Isotopenverteilung eliminiert werden müßte. Wie aus den Daten zu entnehmen ist, trifft dies wohl zu für die ¹³C-markierten Vorläufer 1c und 2c, nicht aber für die [D]Isotopomeren. Es ist offensichtlich, daß der Keten-Abspaltung aus 11 H/D-Platzwechsel vorgelagert sein müssen, die letzten Endes zu der in Tab. 3 angegebenen Isotopenverteilung führen.

Tab. 3. Keten-Abspaltung aus den $[M - X]^+$ -Ionen aus 1a - 2c in %, normiert auf 100%

	1	8	11)	1	c	28	1	21	,	20	2
Keten	Exp.	Ber. ^{a)}	Exp.	Ber.								
C ₂ D ₂ O	44	100	_	_	_	_	39	100	_	_	_	_
C ₂ HDO	56	-	58	-	-	-	61	-	63	-	-	-
C ₂ H ₂ O	-	-	42	100	~	-	-	-	37	100	-	-
¹³ C ¹² CH ₂ O	-	-	-	-	100	100	-	-	-	-	100	100

a) MNDO-Rechnung nach Abb. 3 (s. Text).

Ohne den Anspruch zu erheben, die Isotopenverteilung quantitativ erklären zu können, haben wir doch versucht, mit Hilfe der MNDO-Rechnungen einige Details über die H/D-Platzwechselvorgänge zu erfahren, wobei mögliche Isotopieeffekte unberücksichtigt bleiben mußten. Aus grundsätzlichen Erwägungen kommen alle jene Isomerisierungswege prinzipiell in Frage, die über Übergangszustände verlaufen, die ein $\Delta H_{\rm f}^{\circ}$ < 232 kcal \cdot mol⁻¹ (TS₁₀) besitzen. Aus der Vielzahl der von uns berechneten Möglichkeiten sollen hier nur zwei erwähnt werden (Abb. 4). Der energetisch günstigste Weg entspricht einer Folge von [1.2]-Hydridwanderungen 11 $\xrightarrow{\text{TS}_{13}}$ 18 $\xrightarrow{\text{TS}_{14}}$ 19¹⁹⁾ (Abb. 4). Der Übergangszustand TS₁₄ liegt mit 213 kcal · mol⁻¹ tatsächlich soviel niedriger als TS_{10} (232 kcal · mol⁻¹, Abb. 3), daß dieser Reaktionsweg vernünftig erscheint. Ausgeschlossen werden kann mit großer Sicherheit eine direkte transannulare H-Übertragung, bei der ein Wasserstoff der C²-Methylengruppe direkt auf den Stickstoff übertragen würde (11 \rightarrow 20). Der Übergangszustand (TS₁) dieser Reaktion läge mit ΔH_{c}^{0} = 255 kcal \cdot mol⁻¹ beträchtlich höher als die Barriere der Isomerisierung 11 \rightarrow 15 (Abb. 3), die ihrerseits den höchsten Punkt in der Reaktionskoordinate der Keten-Abspaltung darstellt.

Obwohl die in den Abbildungen 3 und 4 dargestellten Reaktionswege erkennen lassen, nach welchem Mechanismus die unimolekulare Keten-Abspaltung erfolgt und wie dieser Reaktion H-Platzwechsel via reversible Isomerisierungen vorgelagert sein können, kann doch nicht übersehen werden, daß eine quantitative Erklärung der in Tab. 3 aufgeführten Daten mit diesen Modellen allein nicht gegeben werden kann. Ob nicht in Rechnung gestellte Isotopieeffekte eine beson-

dere Rolle spielen oder in Wirklichkeit ganz andere Isomerisierungen ablaufen, kann z. Z. nicht entschieden werden. Erwähnenswert ist jedoch, daß die Keten-Abspaltung aus den $[M - X]^+$ -Ionen mit Sicherheit nicht aus dem Ion 7 (Schema 1) erfolgt. Diese Spezies, die unter EI-Bedingungen überhaupt keine Rolle zu spielen scheint, würde, wenn sie überhaupt erzeugt werden kann, ausschließlich CO verlieren. CO-Eliminierung erfordert eine Aktivierungsenergie von nur 10 kcal · mol⁻¹; der energetisch am nächstgünstigsten Reaktionsweg entspricht einer [1.2]-H-Wanderung $[7 \rightarrow (CH_3)_2 N = CH - CHO]$ mit einer Aktivierung von > 47 kcal · mol⁻¹. Für andere Isomerisierungswege liefert die Rechnung wesentlich höhere Aktivierungsenergien, so daß sie nicht in Frage kommen. Direkter Ketenverlust aus z. B. 7 ist ebenfalls höchst unwahrscheinlich, da 1) die berechneten Übergangszustände höher liegen als TS₁₀ und 2) ein solcher Modus auch mit den Experimentalbefunden (D-Markierung) unverträglich wäre.

Abb. 4. MNDO-Reaktionsprofil zum H-Platzwechsel in 5

Dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft (Projekt Schw 221/5) und der Schering AG, Berlin, danken wir für die Förderung dieser Arbeit. – Herrn Dr. H. Morhenn und Herrn Dipl.-Chem. R. Wolfschütz sei für experimentelle Mitarbeit gedankt.

Experimenteller Teil

IR-Spektren: in CHCl₃, Beckman IR 9. – ¹H-NMR-Spektren: in CDCl₃, Varian EM 390 (TMS als innerer Standard, δ -Skala). – Massenspektren: Varian MAT 711 (70 eV Ionisierungsenergie; 800 μ A Emissionsstrom). – MIKE-Spektren: Varian MAT 311A nach der üblichen Methode^{9,13b)}. – Elementaranalysen: Hewlett-Packard-C,H,N-Analyzer. – Schmelz- und Siedepunkte (Luftbadtemperatur bei Kugelrohrdestillation) sind unkorrigiert.

2-Brom-N,N-dimethylacetamid (1) wurde nach Weaver²⁰) in 78proz. Ausb. aus Bromacetylbromid und Dimethylamin als wasserklare Flüssigkeit erhalten. Sdp. 140°C/14 Torr. – IR:

1660 cm⁻¹ (Amid). – ¹H-NMR (CDCl₃): $\delta = 2.90$ (s, NCH₃), 3.05 (s, NCH₃), 3.71 (s, CH₂). – Analog wurde 2-Brom-N,N-di[D₃]methylacetamid (1b) durch Verwendung von HN(CD₃)₂ (Merck Sharp und Dolme, München) in 80proz. Ausb. erhalten. (D₆ > 95%). – ¹H-NMR (CDCl₃): $\delta = 3.80$ (s, CH₂). – 2-Brom-N,N-dimethyl-[2,2-D₃]acetamid (1a) wurde nach literaturbekannten Verfahren über die folgende Sequenz hergestellt: Aus Malonsäure wurde in 67 proz. Ausb. durch H/D-Austausch²¹) und anschließende Decarboxylierung CD₃CO₂D erhalten (D₄ = 72%), die sich nach Murray²²⁾ mit Br₂/P in 90 proz. Ausb. in 2-Brom-[2,2-D₂]acetylbromid überführen ließ. Hieraus erhielt man in 78 proz. Ausb. 1a (D₂ = 73%), D₁ = 24%). – ¹H-NMR (CDCl₃): $\delta = 3.05$ (s, breit, NCH₃). – 2-Brom-N,N-dimethyl-[1-¹³C]acetamid (1c) wurde aus [1-¹³C]Essigsäure (¹³C = 91%) über das Bromacetylbromid in 77 proz. Ausb. hergestellt. – ¹H-NMR (CDCl₃): $\delta = 3.0$ (d, J = 3 Hz; NCH₃), 3.10 (d, J = 3 Hz; NCH₃), 3.85 (d, J = 3 Hz; CH₂). – [1-¹³C]Essigsäure wurde nach Lit.²²⁾ aus CH₃I und ¹³CO₂ (Ba¹³CO₃/H₂SO₄) in 70 proz. Ausb. erhalten.

Kation ΔH_{f}° (kcal · mol ⁻¹)	Geom	etric	Ladung	sverteilung
$\varphi = \begin{pmatrix} H & H & H \\ P & P & P \\ P & P & P \\ P & P & P \\ P & P &$	$\begin{array}{c} O^{1}C^{1}\\ C^{1}C^{2}\\ C^{1}N^{1}\\ N^{1}C^{3}\\ C^{2}N^{2}\\ O^{1}C^{1}C^{2}\\ O^{1}C^{1}N^{1}\\ C^{1}N^{1}C^{3}\\ O^{1}C^{1}C^{2}N^{2}\\ N^{2}C^{2}C^{1} \end{array}$	1.21 1.54 1.49 1.45 1.55 123 115 120 180 119	0 ¹ N ¹ C ¹ C ² C ³	- 0.14 - 0.12 0.30 0.06 0.12
4 a ₁ 152	OC ¹ C ¹ C ² C ¹ N C ² CI NC ⁴ OC ¹ C ² OC ¹ N HOC ¹ C ¹ NC ⁴ HOC ¹ N OC ¹ NC ⁴ HOC ¹ NC ⁴ NC ¹ NC ⁴	1.33 1.51 1.42 1.79 1.35 1.51 115 119 119 121 119 350 237 60 177	H(O) O N C1 C ¹ C ² C ⁴	0.25 -0.16 -0.21 -0.14 0.11 0.15 0.23 0.16
4a ₂ 147	OC ¹ C ¹ C ² C ² N C ² Cl NC ³ NC ⁴ OC ¹ C ² OC ¹ N HOC ¹	1.33 1.50 1.43 1.78 1.33 1.51 125 112 115	H(O) O N CI C ¹ C ² C ⁴	0.26 -0.16 -0.15 -0.12 0.03 0.13 0.28 0.17

Tab. 4. Bildungsenthalpien, Geometrien und Ladungsverteilungen (auszugsweise) von einigen ausgewählten Kationen. Die Abstände AB sind in Å und die Winkel in Grad angegeben. Die Interplanarwinkel A B C D beziehen sich auf die Flächen A B C bzw. B C D

Kation ΔH_{t}° (kcal · mol ⁻¹)	G c om	etrie	Ladungs	verteilung
	C ¹ NC ³ C ¹ NC ⁴ HOC ¹ N OC ¹ NC ³ OC ¹ NC ⁴ NC ¹ C ² Cl	121 117 186 248 72 182		
H H H N2 H Y S SH1 H S S SH1 4b ₁ 185	O ¹ C ¹ C ¹ C ² C ² N ² C ¹ X ¹ N ¹ C ⁴ O ¹ C ¹ C ² C ¹ C ¹ X ¹ C ⁴ C ¹ X ¹ C ⁴ HO ¹ C ¹ X ¹ C ³ O ¹ C ¹ N ¹ C ⁴	1.33 1.52 1.57 1.42 1.35 1.52 116 112 119 123 119 310 335 150	H(O ₁) O ¹ N ¹ C ² C ³	0.25 -0.19 -0.18 0.15 0.10 0.21 0.16
H d H H Y O H J Y O H	O ¹ C ¹ C ¹ C ² C ² N ² C ¹ N ¹ N ¹ C ³ N ¹ C ⁴ O ¹ C ¹ C ² C ² C ² N ² O ¹ C ¹ N ¹ C ¹ N ¹ C ⁴ HO ¹ C ¹ N ¹ C ³ O ¹ C ¹ N ¹ C ³	1.33 1.51 1.57 1.41 1.36 1.51 123 111 113 122 120 172 335 153	H(O ¹) O ¹ C ¹ C ² C ³	0.27 -0.19 -0.16 0.13 0.08 0.22 0.16
^H ^H ^H ^H ^H ^H ^H ^S ^{E^H 5 151}	OC ¹ C ¹ C ² C ¹ N NC ³ NC ⁴ OC ¹ C ² OC ¹ NC ³ C ¹ NC ⁴ OC ¹ NC ³ OC ¹ NC ⁴ OC ¹ NC ⁴	1.35 1.35 1.48 1.32 1.50 128 109 120 117 285 101 174 244	H(O) O N C ¹ C ² C ³ C ⁴	0.23 - 0.24 - 0.18 0.06 0.03 0.33 0.16

Tab. 4 (Fortsetzung)

I aU. 4 (FURSECURITY)							
Kation ΔH_f° (kcal · mol ⁻¹)	Geon	netrie	Ladungs	sverteilung			
o = + H H ۲ N CH3 CH3 CH3 7 166	OC ¹ C ² C ² N OC ¹ C ² C ² N C ¹ C ² N OC ¹ C ² H ¹ C ¹ C ² NC ³	1.15 1.56 1.41 181 108 56 101	O N C ¹ C ²	0.10 - 0.47 0.39 0.28			
сна н .н .н .н н .н н .н н .н н .н н .н н	C ¹ C ² C ² C ³ C ³ N C ¹ N NC ⁴ OC ¹ C ¹ C ² C ³ C ² C ³ N C ² NC ⁴ OC ¹ C ² C ² C ³ N C ² C ² C ³ OC ¹ C ² OC ¹ C ² C ³	1.54 1.56 1.51 1.35 1.48 1.30 85 87 132 141 0.2 180 180 0.5	H(O) O N C ¹ C ² C ³ C ⁴	0.28 - 0.15 - 0.30 0.34 - 0.02 0.15 0.20			
сн, н н, н 11 134	C ¹ C ² C ² C ³ N C ¹ N NC ⁴ OC ¹ C ¹ C ² C ³ N C ² NC ⁴ OC ¹ C ² C ² C ³ N C ² C ³ N C ² C ² N C ² C ² N C ² C ³ N C ² C ² OC ¹ C ² C ³ HOC ¹ C ²	1.54 1.56 1.51 1.35 1.47 1.29 85 88 131 132 - 0.2 180 180	H(O) O N C ¹ C ² C ³ C ⁴	0.27 -0.14 -0.35 0.37 0.00 0.14 0.19			
н ^с н, н н <u>1</u> .н 15 144	C ¹ C ² C ² C ³ C ¹ N C ¹ C ² C ³ C ² C ² N C ³ NC ⁴ OC ¹ C ² C ³ OC ¹ C ² C ³ OC ¹ C ² C ³ C ² C ³ NC ⁴ OC ¹ C ² C ³	1.52 1.55 1.54 1.58 1.19 90 91 119 147 0.0 124 179	H(N) O N C ¹ C ² C ³	0.20 - 0.09 - 0.20 0.32 0.00 0.09			

Tab. 4 (Fortsetzung)

Kation ΔH_{f}° (kcal · mol ⁻¹)	Geon	netrie	Ladung	sverteilung
	C ¹ C ² C ² C ³ C ³ O C ⁴ N C ¹ N HN C ¹ NC ⁴ HNC ¹ C ² C ³ O	1.56 1.48 1.15 1.48 1.47 1.01 118 110 180	H(N) O N C ¹ C ² C ³	0.15 -0.12 -0.42 0.11 0.02 0.49
н _э ссти м 17 189	C ¹ N C ² N HN C ¹ NH C ² NH C ² NHC ¹	1.31 1.49 1.02 118 115 180	H(N) N C ¹	0.24 - 0.18 0.32
нос. нос. нос. нос. нос. нос. нос. нос.	C ¹ C ² C ² C ³ C ³ N C ¹ N C ¹ N C ¹ O C ² C ³ N C ² C ³ N C ² C ³ N C ² C ² N C ² C ³ N C ² C ² N C ² C ³ N C ³ C ³ N C ³ C ³ N C ² C ³ N C ³ C ³ N	1.55 1.49 1.48 1.50 1.47 1.37 2.09 90 89 123 112 9 144 123 183 168	H ¹ (O) H ² O N C ¹ C ² C ³	0.25 0.16 -0.28 -0.43 0.22 0.42 0.03 0.18
HE N H H 19a 145	C ¹ C ² C ² C ³ C ¹ N C ¹ O C ¹ C ² C ³ C ² C ³ N C ³ NC ⁴ OC ¹ C ² HOC ¹ C ¹ C ² C ³ N C ² C ³ NC ⁴ HOC ¹ C ²	1.58 1.52 1.32 1.57 1.35 86 95 133 123 117 2 180 339	H(O) O N C ¹ C ² C ³	0.23 -0.25 -0.27 0.27 -0.08 0.25
H ₂ C H H Q H 19b 143	C ¹ C ² C ² C ³ C ¹ N C ¹ O C ¹ C ² C ³ C ² C ³ N	1.58 1.52 1.33 1.57 1.36 86 95	H(O) O N C ¹ C ² C ³	0.24 - 0.26 - 0.27 0.28 - 0.04 0.26

Tab. 4 (Fortsetzung)

Kation ΔH_f° (kcal · mol ⁻¹)	Geom	etrie	Ladungs	sverteilung
	C ³ NC ⁴ OC ¹ C ² HOC ¹ C ¹ C ² C ³ N C ² C ³ NC ⁴ HOC ¹ C ²	132 115 115 0.9 181 157		
² 0а 161	ເ ¹ ເ ² ເ ² ເ ² ເ ² ເ ³ ג ¹ ג ¹ ג ¹ ג ¹ ג ¹ ג ¹ ג ¹ ג ¹	1.36 1.52 1.57 1.53 1.32 94 86 119 145 114 1.5 124 71	H(O) O N C ¹ C ² C ³	0.25 -0.19 -0.12 0.12 -0.06 0.14
20b 161	C ¹ C ² C ² C ³ N C ¹ N C ¹ O C ¹ C ² C ³ N C ² C ² C ³ N C ³ NC ⁴ C ³ C ¹ C ² C ² C ³ NC ⁴ C ² C ³ NC ⁴ HOC ¹ C ²	1.36 1.52 1.56 1.53 1.32 94 87 119 146 114 0.3 122 287	H(O) O N C ¹ C ² C ³	0.25 -0.19 -0.12 0.12 -0.05 0.13
o = , , , , , , , , , , , , , , , , , , ,	C ¹ C ² C ¹ 0 C ¹ N C ² Cl C ⁴ N C ¹ NC ⁴ OC ¹ C ² NC ¹ 0 NC ¹ C ² Cl OC ¹ NC ³	1.53 1.21 1.50 1.78 1.45 119 127 114 180 89	O N C I C ¹ C ² C ³	- 0.14 - 0.14 - 0.14 0.30 0.09 0.11

Tab. 4	↓ (Fo	rtsetz	una)
--------	-------	--------	------

N,N-Dimethyl-2-nitroacetamid (2): 0.50 g (4.0 mmol) 2-Nitroessigsäure-methylester²³⁾ wurden mit 10 ml gesättigter, wäßriger Dimethylaminlösung 3 h unter Rückfluß unter N₂-Atmosphäre gekocht. Nach Abkühlen wird mit HCl schwach angesäuert und mehrfach mit Diethylether extrahiert. Die org. Phase wird neutral gewaschen, über MgSO₄ getrocknet und eingeengt. Die aus der Lösung ausfallenden farblosen, schwach glänzenden Kristalle werden aus Ether umkristallisiert.

Ausb. 0.23 g (43%), Schmp. 78°C. – IR: 1680 (Amid), 1570 cm⁻¹ (NO₂). – ¹H-NMR (CDCl₂): $\delta = 3.08$ (s, NCH₁), 3.10 (s, NCH₁), 5.31 (s, CH₂).

C₄H₈N₂O₃ (132.1) Ber. C 36.36 H 6.10 N 21.20 Gef. C 36.06 H 6.13 N 21 54

N,N-Dimethyl-2-nitro-[2,2-D_Jacetamid (2a): 50 mg 2 werden bei Raumtemp. 24 h mit 1 ml D₂O gerührt. Anschließend wird das Wasser abgezogen und der H/D-Austausch wiederholt. Nach Trocknen i. Hochvak. erhält man 2a mit einer Einbaurate von $D_2 = 90\%$, $D_1 = 10\%$. ¹H-NMR (CDCl₁): $\delta = 3.08$ (s, NCH₁), 3.10 (s, NCH₁).

N,N-Di[D₃]methyl-2-nitroacetamid (2b) wurde unter Verwendung von HN(CD₃)₂ analog zu 2 in 43 proz. Ausb. aus 2-Nitroessigsäure-methylester erhalten. Einbaurate $D_6 > 95\%$. – ¹H-NMR $(CDCl_{3}): \delta = 5.30 (s, CH_{2}).$

 $N, N-Dimethyl-2-nitro-(1-1^3C)$ acetamid (2c) wurde nach folgendem literaturbekanntem Verfahren hergestellt: [1-13C]Essigsäure wurde nach Lit.²²⁾ in 74proz. Ausb. in 2-Brom-[1-13C]essigsäuremethylester übergeführt, aus dem nach Kornblum²⁴⁾ über den 2-Iod-[1-¹³C]essigsäure-methylester mit AgNO₂²⁵⁾ der 2-Nitro-[1-¹³C]essigsäure-methylester in einer Gesamtausb. von 85% erhalten wurde. Hieraus ließ sich 2c in 40proz. Ausb. gewinnen (${}^{13}C_1 = 91\%$). - ${}^{1}H$ -NMR (CDCl₃): $\delta =$ 3.05 (m, NCH_{1}), $5.35 \text{ (d, } J = 4 \text{ Hz; CH}_{2}$).

- 3) J. P. Bégue und M. Charpentier-Morize, Acc. Chem. Res. 13, 207 (1980).
- ⁴ H. Morhenn, Dissertation D 83, Techn. Univ. Berlin 1970.
 ⁵ ⁵a) H. Schwarz, Nachr. Chem. Techn. Lab. 28, 158 (1980). ^{5b)} H. Schwarz, Top. Curr. Chem., im Druck. - 5c) H. Schwarz, Org. Mass Spectrom. 15, 491 (1980). - 5d) H. Schwarz, Ann. Chim. (Rome), im Druck.
- ⁹ Für eine jüngere Übersicht siehe W. J. Richter und H. Schwarz, Angew. Chem. 90, 449 (1978); Angew. Chem., Int. Ed. Engl. 17, 424 (1978).
- ⁷ Wie weiter unten im theoretischen Teil gezeigt wird, sind die in den Formeln (Schema 1) wiedergegebenen Ladungsverteilungen, Geometrien und strukturellen Details nicht immer zutreffend bzw. nur näherungsweise korrekt. Ihr Gebrauch ist nur durch ihre Anschaulichkeit zur Verdeutlichung von Reaktionswegen gerechtfertigt.
- ⁸⁾ Für Übersichten siehe^{8a)} R. G. Cooks, J. H. Beynon, R. M. Caprioli und G. R. Lester, Metastable Ions, Elsevier, Amsterdam 1973. - 8b) K. Levsen, Fundamental Aspects of Organic Mass Spectrometry, Verlag Chemie, Weinheim 1978. - 8c) D. H. Williams, Acc. Chem. Res. 10, 280 (1977). - 8d) R. D. Bowen, D. H. Williams und H. Schwarz, Angew. Chem. 91, 484 (1979); Angew. Chem., Int. Ed. Engl. 18, 451 (1979).
- 9) MIKE, Akronym für Mass Analyzed Ion Kinetic Energy. Zur Methode siehe Lit.⁸⁾ und ferner: ⁹⁴⁾ J. H. Beynon, R. G. Cooks, J. W. Amy, W. E. Baitinger und T. Y. Ridley, Anal. Chem. **45**, 1023 A (1973). - ^{9b)} U. P. Schlunegger, Angew. Chem. **87**, 731 (1975); Angew. Chem., Int. Ed. Engl. 14, 679 (1975). - 9c) K. Levsen und H. Schwarz, ebenda 88, 589 (1976) und 15, 509 (1976).
- ¹⁰, ^{10a)} M. J. S. Dewar und W. Thiel, J. Am. Chem. Soc. 99, 4889, 4907 (1977). ^{10b)} M. J. S. Dewar, M. L. McKee und H. S. Rzepa, ebenda 100, 3607 (1978).
- ¹¹⁾ Ähnliche, bisher unveröffentlichte Ergebnisse wurden in unabhängigen Untersuchungen von J. Seibl erhalten. - Wir danken Herrn Prof. Seibl, ETH Zürich, für die Mitteilung seiner Resultate und hilfreiche Diskussionsbeiträge.
- ¹²⁾ Daß das Neutralteil C_2H_4 tatsachlich Ethylen und nicht Methylcarben, CH₃CH, ist, legen sowohl die Markierungsresultate als auch energetische Daten nahe. Die Differenz der Bildungsenthalpien, $\Delta \Delta H_f^{\circ}$, von CH₃CH und CH = CH₂ ist mit 72.3 kcal · mol⁻¹ zu groß, als daß Methylcarben erzeugt werden könnte.
- 13) 13a) H. Schwarz, W. Franke, J. Chandrasekhar und P. v. R. Schleyer, Tetrahedron 35, 1969 (1979). - 13b) R. D. Bowen, J. Chandrasekhar, G. Frenking, P. v. R. Schleyer, H. Schwarz,

¹⁾ XXX. Mitteil.: K. Levsen, H. Heimbach, M. Bobrich, J. Respondek und H. Schwarz, Z. Naturforsch., Teil B 32, 880 (1977).

²⁾ Auszugsweise vorgetragen (H. S.) auf der EUCHEM-Konferenz "The Chemistry of Ion Beams", Lunteren, Holland, April 1980.

C. Wesdemiotis und D. H. Williams, Chem. Ber. 113, 1084 (1980). - ^{13c)} W. Franke, H. Schwarz, H. Thies, J. Chandrasekhar, P. v. R. Schleyer, W. J. Hehre, M. Saunders und G. Walker, Angew. Chem. 92, 488 (1980); Angew. Chem., Int. Ed. Engl. 19, 485 (1980). - ^{13d)} G. Frenking, J. Schmidt und H. Schwarz, Z. Naturforsch., Teil B 35, 1031 (1980). - ^{13e)} Y. Apeloig, W. Franke, Z. Rappoport, H. Schwarz und D. Stahl, J. Am. Chem. Soc., im Druck.

- ¹⁴⁾ ^{14a)} M. J. S. Dewar, J. A. Hashmall und G. G. Venier, J. Am. Chem. Soc. 90, 1953 (1968). –
 ^{14b)} M. J. S. Dewar und N. Trinajstic, J. Chem. Soc. 1971, 1220.
- ¹⁵⁾ 4 liegt für einen gegebenen Substituenten X in mindestens zwei stabilen Konformationen vor, die sich durch die Orientierung der OH-Gruppe (*syn/anti*) unterscheiden (siehe Tab. 4). Aus beiden Formen kann der Substituent X^{*} unter Erzeugung von 5 eliminiert werden. 5 seinerseits existiert ebenfalls in wenigstens zwei stabilen Formen (cisoide und transoide Konformation (5, 5a), siehe Tab. 4).
- ¹⁶⁾ Für Geometriedetails der Kationen und deren Ladungsverteilungen siehe Tab. 4.
- ¹⁷⁾ Der Vierring 11 besitzt eine planare Geometrie. Die OH-Gruppe kann eine syn- (11) bzw. anti-Orientierung (11a) zur NCH₃-Gruppe einnehmen, wobei die anti-Form um 1.3 kcal · mol⁻¹ stabiler ist als die syn-Konformation. Die Barriere für die Isomerisierung syn → anti beträgt nach MNDO 7 kcal · mol⁻¹. Für weitere strukturelle Details siehe Tab. 4.
- ¹⁸⁾ Es sei der Vollständigkeit halber erwähnt, daß Bruch der N C³-Bindung in 15 eine Route eröffnet, über die auch Ethylen eliminiert werden kann; hierbei wird ein Übergangszustand mit ΔH²_i = 202 kcal · mol⁻¹ durchlaufen, aus dem beim Fortschreiten der Reaktion neben Ethylen ein "N-protoniertes" Methylisocyanat, CH₃Ň(H) = C = O, entsteht. Wir denken aber, daß diese Route zur gesamten Ethylen-Elininierung keinen (oder nur einen sehr geringen) Beitrag leistet, da 1) dieser Prozeß energetisch weniger favorisiert ist als die konkurrierende Keten-Abspaltung aus 15 (202 versus 185 kcal · mol⁻¹) und 2) der direkte Weg 11 → 12 → 13 (Abb. 2) für die Ethylen-Abspaltung mit TS₉ = 209 kcal · mol⁻¹ wesentlich günstiger ist als der Prozeß 11 → 15 → CH₃N(H) = C = O, det für den etsten Schritt (TS₁₀) immerhin 232 kcal · mol⁻¹ verlangt. Anmerk. bei der Korrektur (27. 2. 1981): Neuere Rechnungen haben ergeben, daß für die Genese von 15 neben dem in Abb. 3 wiedergegebenen Reaktionsweg ein zweiter, energetisch vergleichbarer Prozeß denkbar ist. Hierbei isomerisieren die Moleküllonen von 2 bzw. 21 zunächst in einer [1.2]-H-Wanderung (TS = 213 kcal/mol) z. B. zu H

 $ClCH_2CON^+(CH_3)CH_2$; aus dieser Zwischenstufe kann dann über einen Übergangszustand mit TS = 237 kcal/mol Cl⁺ unter direkter Erzeugung von 15 eliminiert werden.

- 19, 11, 18 und 19 existieren wiederum in syn/anti-Formen in bezug auf die Orientierung der O~ H-Funktion relativ zur NCH₃-Gruppe. Bei der Analyse des H-Scrambling wird nur das Verhalten der syn-Formen diskutiert.
- 20) W. E. Weaver und W. M. Whaley, J. Am. Chem. Soc. 69, 515 (1947).
- 21) C. Párkányi und F. Šorm, Collect. Czech. Chem. Commun. 28, 2491 (1963).
- 22) A. Murray III und D. L. Williams, Organic Synthesis with Isotopes, Interscience Publishers, New York 1958.
- ²³⁾ S. Zen, M. Koyama und S. Koto, Org. Synth. 55, 77 (1976).
- 24) N. Kornblum, M. E. Chalmers und R. Daniels, J. Am. Chem. Soc. 77, 6654 (1955).
- ²⁵⁾ N. Kornblum und H. E. Ungnade, Org. Synth. Coll. Vol. IV, 724.

[282/80]